
THE JOURNAL OF CHEMICAL PHYSICS 124, 014109 �2006�
Irreducible correlation functions of the Ŝ matrix in the coordinate
representation: Application in calculating Lorentzian half-widths and shifts
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By introducing the coordinate representation, the derivation of the perturbation expansion of the

Liouville Ŝ matrix is formulated in terms of classically behaved autocorrelation functions. Because
these functions are characterized by a pair of irreducible tensors, their number is limited to a few.
They represent how the overlaps of the potential components change with a time displacement, and
under normal conditions, their magnitudes decrease by several orders of magnitude when the
displacement reaches several picoseconds. The correlation functions contain all dynamical
information of the collision processes necessary in calculating half-widths and shifts and can be
easily derived with high accuracy. Their well-behaved profiles, especially the rapid decrease of the
magnitude, enables one to transform easily the dynamical information contained in them from the
time domain to the frequency domain. More specifically, because these correlation functions are
well time limited, their continuous Fourier transforms should be band limited. Then, the latter can
be accurately replaced by discrete Fourier transforms and calculated with a standard fast Fourier
transform method. Besides, one can easily calculate their Cauchy principal integrations and derive
all functions necessary in calculating half-widths and shifts. A great advantage resulting from
introducing the coordinate representation and choosing the correlation functions as the starting point
is that one is able to calculate the half-widths and shifts with high accuracy, no matter how
complicated the potential models are and no matter what kind of trajectories are chosen. In any case,
the convergence of the calculated results is always guaranteed. As a result, with this new method,
one can remove some uncertainties incorporated in the current width and shift studies. As a test, we
present calculated Raman Q linewidths for the N2–N2 pair based on several trajectories, including
the more accurate “exact” ones. Finally, by using this new method as a benchmark, we have carried
out convergence checks for calculated values based on usual methods and have found that some
results in the literature are not converged. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2139671�
I. INTRODUCTION

In order to carry out the forward modeling of atmo-
spheric radiatiative transfer processes and to obtain informa-
tion on the abundances of molecular species, temperature-
pressure profiles, and other atmospheric properties, one
needs accurate spectroscopic data. This includes not only
line positions and strengths, but also the temperature-
dependent Lorentzian half-widths and pressure shifts. Be-
cause the ambient atmospheric species, temperatures, and
pressures are not always amenable to laboratory measure-
ments, or because of the large number of transitions possible,
one often has to rely on theoretical calculations. It is well
known that the formalisms used to calculate half-widths and
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shifts of molecular spectral lines such as the Anderson-Tsao-
Curnutte �ATC� theory,1,2 the Bobert-Bonamy �RB� theory,3,4

and others are based on two basic approximations: the binary
collision and the impact approximations. With these two ap-
proximations, calculations of the pressure broadened half-
widths and shifts of the absorber molecular lines are reduced
to thermal averages of all possible collision processes in-
volving a pair of molecules; and in comparison with the time
of interest, these collisions are assumed to be completed in-
stantaneously. In addition, both the ATC and RB formalism
are semiclassical theories. In other words, the translational
motion of the pair is treated classically, while their internal
degrees of freedom are treated quantum mechanically. This
semiclassical method is valid in calculating molecular spec-
tral lines for temperatures of interest in atmospheric applica-

tions. However, the current theories are also based on other
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assumptions. Some of these lack sound justification and
could lead to uncertainties that affect the reliability of the
calculated results. Thus, further refinements and improve-
ments are necessary.

In this paper, we present a new theoretical formalism
for the calculation of converged results for half-widths and
shifts no matter how complicated the interaction potential is
or what type of trajectory is used to describe the collisional
path. This method is described in the next section and
illustrated by calculations for the N2–N2 pair. In the final
section, we discuss briefly the conclusions from the present
study.

II. THEORY

A. Half-widths and shifts given by the perturbation
expansion of the Ŝ matrix

The main computation task for calculating the Lorentz-
ian half-widths and shifts is the evaluations of matrix ele-

ments appearing in the perturbation expansion of the Ŝ ma-
trix �=SI ·SF

* , where SI and SF are scattering matrices in
Hilbert space�. Usually, in practice, these evaluations are
limited to the second order of the expansion. For example,
with the modified RB formalism,5 the expressions of the
half-widths and shifts are given by

� =
nb

2�c
�

0

+�

vf�v�dv�
0

+�

2�bdb

��1 − cos�S1 + Im S2�e−Re S2� , �1�

and

� =
nb

2�c
�

0

+�
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0
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2�bdb sin�S1 + Im S2�e−Re S2,

�2�

respectively, where f�v� is the Maxwell-Boltzmann distribu-
tion function. In the above, S1 and S2 associated with the first

and second orders of the perturbation expansion of the Ŝ
matrix, respectively, are defined by

S1 =
1

q
�

−�

+�

dt�L1�t�� �3�

and

S2 =
1

q2�
−�

+�

dt�
−�

t

dt���L1�t�L1�t��� − �L1�t���L1�t���	 ,

�4�

where L1�t� is a Liouville operator associated with the Hil-

bert interaction operator V̂�t��
ei�Ha+Hb�t/qVe−i�Ha+Hb�t/q�, and
�¯� means an average over the internal degrees of the bath
molecule carried out in the line space. As expected, evaluat-

ing S2 is more difficult than S1 and is outlined here. In order
to calculate S2, one has to rewrite everything in Eq. �4� back
in terms of Hilbert operators and states. A comprehensive
expression for S2 is well known and can be found in the
literature.2–4 Usually, people prefer to represent S2 by three
terms labeled by S2,outer,i, S2,outer,f, and S2,middle, respectively.
In the present study, we follow the same custom, and as an
example we show how to calculate S2,outer,i in detail here. For
simplicity, we assume both the absorber and bath molecules
are linear.

It is well known that both the ATC and RB formalisms
are applicable only for well-separated lines because they are
based on the additional assumption that the Liouville opera-

tor Ŝ is diagonal in the line space of the absorber molecule.
�That is, line coupling is neglected.� The purpose of intro-
ducing this assumption is to make the calculations more trac-
table. Now, we are ready to present the explicit expression
for S2,outer,i which is given by

S2,outer,i =
1

q2�2i + 1��i2
�i2�

−�

+�

dt�
−�

t

dt�

��
�m�

�imii2mi2
�V̂�R�t��V̂�R�t����imii2mi2

� , �5�

where i and mi represent initial states of the absorption line
of interest, i2 and mi2 the states of the bath molecule, �i2 is
the density matrix of the bath molecule, and the symbol
�m� means summations over all magnetic quantum numbers.
In the above expression, R�t� is a vector connecting the
two mass centers of the molecular pair. Thus, R�t�, as a clas-
sical function of t, describes the translational motion of
the molecular pair. With respect to the internal degrees and
the translational degrees of the pair, the interaction potential
V behaves differently: V is an operator acting on the former,
while V depends on the latter parametrically. Based on
this, one can write S2,outer,i in a form more suitable for cal-
culations

S2,outer,i =
1

q2�2i + 1��i2
�i2�

i�i2�
�
�m�
�

−�

�

dtei��ii�+�i2i2�
�t�

��imii2mi2
�V�R�t���i�mi�i2�mi2

� �

� �
−�

t

dt�e−i��ii�+�i2i2�
�t�

��i�mi�i2�mi2
� �V�R�t����imii2mi2

� , �6�

where �ii�= �Ei
�a�−E

i�
�a�� /q and �i2i2�

= �Ei2

�b�−E
i2�
�b�� /q. Then,

once the potential model is chosen, one can use Eq. �6� as the
starting point.

Usually, potential models consist of two parts represent-
ing the isotropic and anisotropic interactions, respectively. It
is well known that the latter play a more crucial role than the
former in phenomena induced by molecular interactions6 and
they are also more difficult to deal with. Therefore, we focus
our attention on this part here. For simple potential models
whose anisotropic part consists of the electrostatic interac-
tions Vdd+Vdq+Vqd+Vqq+¯ only, the evaluation of S2,outer,i,

S2,outer,f, and S2,middle has been solved many years ago.
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Because each of these electrostatic interaction components
has distinguishable rotational symmetries, there are no cou-
plings between two different components in calculating
products of the two matrix elements of V in Eq. �6�. In ad-
dition, there is no interweaving between the R�t� dependence
and the internal degree dependence of these components, and
the multipole-moment dependence can be factored out. As a
result, one is able to introduce so-called “resonance func-
tions” which are common for any R�t� and for any multipole-
moment values. Although work related to the derivations of
these resonance functions is tedious, especially for higher
multipole interactions, the calculations are feasible and are
only needed to be done once. Then, their “universal” nature
enables one to easily obtain each of their contributions to
S2,outer,i. Finally, by simply adding these results, one can get
the total contribution to S2,outer,i.

B. Extension of the ATC and RB formalism applicable
for complicated potentials

Given the fact that pressure broadening is a phenomenon
induced by intermolecular interactions, it is not surprising
that theoretical predictions of the half-widths and shifts de-
pend sensitively on the potential models used in the calcula-
tions. In order to meet the accuracy requirements for these
parameters needed for current atmospheric applications, it is
necessary to choose more accurate potential models because
a simple potential model consisting of the electrostatic inter-
action and an isotropic part is too crude to represent the
complicated features of intermolecular interactions. A chal-
lenge arises when one adopts more realistic potential models,
especially for those models containing a short-range interac-
tion represented by an atom-atom model, such as the one
given by

Vatom-atom = �
i�a

�
j�b

4�ij	ij
12

rij
12 −

	ij
6

rij
6 � , �7�

where 	ij and �ij are parameters and rij are distances between

the ith atom of the absorber molecule a and the jth atom of
the bath molecule b. In general, the atom-atom model can be
expressed in terms of a spherical tensor expansion7

Vatom-atom�t� = �
l1l2l

�
m1m2m

�
n�ij	

�
wq

U�l1l2l,n�ij	,wq�

Rl1+l2+q+2w�t�

� C�l1l2l,m1m2m�Yl1m1
�
a�

�Yl2m2
�
b�Ylm

* �
��t� , �8�

where C�l1l2l ,m1m2m� are the Clebsch-Gordan coefficients,
n�ij	 runs over all pairs of atom in Eq. �7�, q=6 or 12, w is an
integer index from 0 to infinity, and definitions for
U�l1l2l ,n�ij	 ,wq� can be found in the literature.7 In the above
expression, the translational motion is described by R�t� and

�t� and orientations of the absorber and bath molecules are
described by 
a and 
b, respectively. At this stage, a com-
mon practice is to follow the steps used in deriving the reso-
nance functions for the electrostatic interaction. In order to
maintain the universal nature of resonance functions, one has
to deal with each individual term separately because different
terms have different dependencies on R�t� and n�ij	. Then, as
usual, albeit with some more tedious algebraic work, one can
derive the matrix elements of Vatom–atom, insert these results
obtained into Eq. �6�, and separate the factors depending on
t or t� from each other. Finally, one is able to obtain an
expression for S2,outer,i suitable for performing numerical
calculations8

S2,outer,i = �
l1l2

�
i�

�
i2i2�

�
n�ij	n�ij	�

D�l1l2,n�ij	n�ij	� ,ii�i2i2��

�Fl1l2

n�ij	n�ij	� ��ii� + �i2i2�
� , �9�

where the D terms are reduced matrix elements and the F

terms are the resonance functions defined by
Fl1l2

n�ij	n�ij	� ��� =
1
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��
−�

�

dtei�t Ylm�
�t��
Rl1+l2+q+2w�t��−�

t

dt�e−i�t�
Yl�m��
�t���

Rl1+l2+q�+2w��t��
. �10�
In Eq. �10�, the results of the two-dimensional integrations
over t and t� are complex functions of �. There are a lot of
such functions because they are characterized by many sum-
mation indices, and for most models, some of these functions
have to be evaluated numerically.
In practice, one has to introduce cutoffs to limit the num-
ber of terms in the expansions to be included in the calcula-
tions. A common practice is to introduce two cutoffs: one to
set the limit for pairs of l1 and l2 to be considered, and the
other to introduce the upper limit for the summation indices
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w and w� in order to limit the highest inverse powers of R�t�
and R�t�� in Eq. �10�. As shown by Eqs. �9� and �10� appli-
cable for linear molecules, as one adopts higher cutoffs, the
number of terms required to be evaluated increases dramati-
cally. As a result, there could be a convergence problem in
calculating contributions to S2,outer,i using the atom-atom
model, especially for cases where nonlinear molecules are
involved because even more indices are required. It is worth
mentioning that these two cutoffs have different characters
because they are associated with the different nature of the
summation indices. The first kind of cutoff deals with the
irreducible tensor pairs of l1 and l2. Because there are no
couplings between terms with different pairs of l1 and l2, it is
certain that weak terms can only make small contributions to
S2,outer,i. Therefore, a criterion for the convergence over this
cutoff can be, more or less, reliably established. In contrast,
with respect to the second kind of cutoff, there are couplings
between terms ignored by the cutoff and terms considered
with the same l1 and l2. We would like to emphasize here that
the latter consists not only of the terms remaining in the
spherical expansion of Vatom-atom, but also the electrostatic
component labeled by l1 and l2. As a result, to ignore weak
terms could cause significant errors because these could
make significant contributions to S2,outer,i through couplings
with other, strong components. Therefore, it becomes more
difficult to establish a reliable convergence criterion and, in
addition, the convergence over this cutoff could become a
formidable obstacle in practical calculations for molecular
pairs unless the electrostatic interaction is overwhelmingly
dominant.

Above, we have outlined the usual method for calculat-
ing S2,outer,i. A drawback of this method is that one could
encounter trouble when atom-atom potential models are con-
sidered. In these cases, to adopt higher cutoffs in the spheri-
cal expansion and to consider all contributions including
couplings between terms with the same categories of l1 and
l2 whose origins could be one of any type �e.g., the long-
range electrostatic, the long-range induction, the short-range
atom-atom interactions, etc.� requires very much tedious
work and many resonance functions such that one may not
be able to obtain converged results.

The possibility of convergence failure forces one to
wonder if this method is the best way to proceed. To seek a
better way is one of the main motivations for the present
study. Based on our experience in dealing with complicated
potential models in treating far-wing line shapes and other
problems, 9,10 we know that the coordinate representation
used in those studies has advantages in dealing with compli-
cated potentials because in this representation the potential
operators are diagonal and can be treated as classical func-
tions. As shown later in detail, with this powerful tool, one is
able to obtain the converged results for any potential model,
no matter how complicated these models are. In addition, all
the potential coupling effects are automatically included in

the calculations.
C. Irreducible tensors of the interaction in the
perturbation expansion of the Ŝ matrix

With the standard method, the basis set in Hilbert space
is constructed from �imi� � �i2mi2�, the product of the states of
two interacting molecules. On the other hand, instead of
choosing the internal states, one can select the orientations of
the pair of molecules as the basis set in Hilbert space; i.e.,
���
a−
a��� � ���
b−
b��� where 
a� and 
b� represent
orientations of the absorber and bath molecules specified by
�, respectively. By introducing the coordinate representation,
the potential becomes a diagonal operator and the matrix
elements become multidimensional integrations.9,10 As a re-
sult, one is able to rewrite S2,outer,i as

S2,outer,i =
1

q2�2i + 1��i2
�i2�

−�

�

dt�
−�

t

dt�

��
i�i2�

�
�m�
� d
�� d
�ei��ii�+�i2i2�

��t−t��

� �imii2mi2
���V��R�t�����i�mi�i2�mi2

� �

� �i�mi�i2�mi2
� ���V��R�t������imii2mi2

� , �11�

where ��� is a shorthand notation for the basis set in the
coordinate representation of the molecular pair and the sub-
script � of V� represents the potential evaluated at a specified
orientation labeled by 
a� and 
b�. The inner products
�imii2mi2 ��� represent a transformation between two basis
sets of these two representations and are nothing but the
well-known functions Yimi

* �a��a���Yi2mi2

* �b��b��. With

some algebraic work, one is able to rewrite the above expres-
sion for S2,outer,i in a more compact form

S2,outer,i = �
l1l2

�
−�

� �
−�

t

dtdt�Gl1l2
�t,t��

�Wl1
�a��t − t��Wl2

�b��t − t�� . �12�

In the above expression, two functions which are indepen-
dent of the potential are defined by

Wl1
�a���� = �

i�

�2i� + 1�C2�ii�l1,000�ei�ii,� �13�

and

Wl2
�b���� = �

i2i2�

�2i2 + 1��2i2� + 1��i2
C2�i2i2�l2,000�ei�i2i2

,�,

�14�

respectively. Meanwhile, the functions Gl1l2
�t , t�� introduced
above are defined by
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Gl1l2
�t,t�� =

q−2

16�2�2l1 + 1��2l2 + 1� �
m1m2

� d
�

�Yl1m1

* �a��a��Yl2m2

* �b��b��V��R�t��

�� d
�Yl1m1
�a��a��Yl2m2

�b��b��V��R�t��� .

�15�

In general, one can express V��R�t�� in terms of the standard
spherical expansions as

V��R�t�� = �
l1l2l

A�l1l2l;R�t��

� �
m1m2m

C�l1l2l,m1m2m�

�Yl1m1
�
a��Yl2m2

�
b��Ylm
* �
�t�� . �16�

It is worth mentioning that both R�t� and 
�t� depend on the
velocity and trajectories along which the translational motion
moves. In comparison with Eq. �8�, terms with the same
summation indices l1, l2, and l have been grouped together in
Eq. �16�. By inserting these expressions for V��R�t�� and
V��R�t��� into Eq. �15�, one can carry out the integrations
over 
� and 
� analytically based on the normalization and
orthogonality of the spherical harmonics associated with
each of the two molecules and obtain an expression for per-
forming numerical calculations,

Gl1l2
�t,t�� =

q−2

�4��3�2l1 + 1��2l2 + 1�

��
l

�− 1��l1+l2+l��2l + 1�Pl�cos �t,t��

� A�l1l2l;R�t��A�l1l2l;R�t��� , �17�

where �t,t� are angles between two vectors R�t� and R�t��.
As shown by Eq. �17�, if one knows how R�t� varies with the
time, to calculate values of Gl1l2

�t , t�� is straightforward. In
order to proceed, one needs to know the velocity and the
trajectory.

As shown above, Gl1l2
�t , t�� arise directly from introduc-

ing the coordinate representation. They are the keystone of
the present formalism and play a crucial role in calculating
S2,outer,i. In fact, the primary advantages of the new method
are associated with them. First of all, because the potentials
are ordinary functions in the coordinate representation, no
matter how complicated they are, to evaluate their values is
easy. As a result, one can freely choose more realistic poten-

tial models, and one does not need to worry about the cutoffs
any more because this convergence obstacle has been obvi-
ated. This is the most important advantage. With the usual
method, as explained above, the second kind of cutoff could
cause convergence trouble because as the cutoff increases,
the number of the resonance functions required to be evalu-
ated increases dramatically. In contrast, with the present
method, this does not happen in calculating Gl1l2

�t , t��. The
second kind of cutoff affects only how accurately one needs
to evaluate the coefficients A�l1l2l ;R�t�� and A�l1l2l ;R�t��� in
Eq. �17�. No matter how high the cutoff goes in calculating
these coefficients, there are small differences as measured by
the needed computational resources. As a result, in evaluat-
ing A�l1l2l ;R�t�� and A�l1l2l ;R�t��� we can use a cutoff
which is sufficiently high to guarantee convergence. Second,
with the new method, one can select more accurate trajecto-
ries. The reason is that no matter which model is chosen,
after the trajectories become available, there are no signifi-
cant differences in evaluating Gl1l2

�t , t��. The only thing that
matters is how easy it is to find the trajectories from the
initial collision conditions. Fortunately, within the current
approximation level in which one assumes that the trajectory
is governed by the isotropic potential, to derive trajectories
with specified impact parameter b is a two-body central force
problem that is well solved in classical mechanics. As shown
later, we are able to handle this problem readily. Therefore,
one can conclude that the present method can easily be ex-
tended to consider more accurate trajectory models than the
parabolic trajectory widely used in previous calculations.
Third, because A�l1l2l ;R�t�� and A�l1l2l ;R�t��� are the entire
components of V�R�t�� and V�R�t���, one does not need to
worry about missing any couplings since these are fully
taken into account automatically. This is another big advan-
tage over the usual method.

Furthermore, the well-behaved profile of Gl1l2
�t , t�� itself

facilitates the development of the present formalism. Unlike
the wildly oscillating features appearing in the resonance
functions within the usual method, Gl1l2

�t , t�� do not exhibit
these and are well-behaved smooth functions. These features
are important in practical calculations because further math-
ematical manipulations of Gl1l2

�t , t�� are necessary and high
accuracy can be preserved in these steps. In addition, if one
sets t=0 when the translational motion reaches the closest
distance rc along the trajectory, the magnitudes of Gl1l2

�t , t��
decrease very quickly to zero as �t� and/or �t�� increase. This
rapid decrease in magnitude will play a crucial role later to
guarantee that the autocorrelation functions derived from
them maintain this same feature. In summary, to calculate
Gl1l2

�t , t�� is so straightforward that some approximations
�i.e., the second kind of cutoff and the parabolic trajectory�
currently introduced can be completely avoided. As a result,
we expect that the corresponding calculated results would be
more physically realistic.

Before we complete our discussions of Gl1l2
�t , t��, we

would like to explain the physical meanings of their labels

and arguments. Because they result from the second-order
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expansion of the Ŝ matrix, they have two labels and two
arguments. It is not surprising that there is no unnecessary
geometric dependence remaining because averages over the
magnetic quantum numbers m1 and m2 have been carried out.
The two discrete labels l1 and l2 of Gl1l2

�t , t�� represent the
ranks of the irreducible tensors constructed by a product of
two potentials. Meanwhile, the two continuous arguments t
and t� represent positions of these two potentials in the time

development process of the Ŝ matrix. The discrete and con-
tinuous natures of the labels and arguments of Gl1l2

�t , t�� cor-
respond to the quantum and classical natures by which the
internal degrees and the translational motion are treated in
the formalism.

For later convenience, by changing integration variables
in Eq. �12�, one is able to express S2,outer,i as

S2,outer,i = �
l1l2

�
−�

� �
0

�

dtdt�Gl1l2
�t,t − t��Wl1

�a��t��Wl2
�b��t��

= �
l1l2

�
0

�

dtWl1
�a��t�Wl2

�b��t�

��
−�

�

dt�Gl1l2
�t� + t/2,t� − t/2� . �18�

Although, it is Gl1l2
�t�+ t /2 , t�− t /2�, not Gl1l2

�t , t�� that are
required in actual calculations, it is obvious that all the dis-
cussion above concerning the latter is also applicable for the
former.

D. Irreducible autocorrelation functions
of the interaction

The functions Gl1l2
�t�+ t /2 , t�− t /2� contain all raw infor-

mation on the dynamical development process of the Ŝ ma-
trix. As shown by Eq. �18�, they appear as a convolution
integration. This implies that Gl1l2

�t�+ t /2 , t�− t /2� can be
condensed to simpler functions which contain the core infor-
mation. The latter are nothing but the autocorrelation func-
tions representing the net dynamical effect from overlaps be-
tween V�R�t�� and V�R�t��� in the second order of the

perturbation expansion of Ŝ and can be defined as

Fl1l2
�t� = �

−�

�

dt�Gl1l2
�t� + t/2,t� − t/2� . �19�

In the present formalism the internal degrees of the molecu-
lar pair have been treated fully quantum mechanically. How-
ever, by introducing the coordinate representation, in the ex-
pressions for Gl1l2

�t , t�� shown by Eq. �15�, one can freely
interchange the order of the potentials V��R�t�� and
V��R�t��� because they are ordinary functions. As a result,
the correlation functions Fl1l2

�t� introduced above look like
the classical ones and are real, even functions. Because
Gl1l2

�t�+ t /2 , t�− t /2� are well-behaved functions and their
values go to zero very quickly as �t�� increases, one does not

face any difficulty in performing the integration in Eq. �19�
numerically and maintaining high accuracy. In our calcula-
tions, we reduce the range of integration from infinity to a
finite value such that the magnitudes of the integrand fall
down by at least six orders of magnitude. Then, with
DQDAG, an integration subroutine using a globally adaptive
scheme based on Gauss-Kronrod rules in IMSL, we can eas-
ily get highly accurate values of Fl1l2

�t� for any t of interest.
In summary, these autocorrelation functions are the core of
the present formalism containing all the physics necessary in
calculating widths and shifts. They are well-behaved func-
tions and their values can be easily derived with a high ac-
curacy. However, it turns out that within the impact theory, it
is more useful to transform this physical information given in
the time domain into the frequency domain. The next section
is devoted to this subject.

E. Fourier transforms of the autocorrelation functions
and their Cauchy principal integrations

After the correlation functions are available, the next
step is to find their corresponding Fourier transforms Hl1l2

���
defined by

Hl1l2
��� =

1
�2�

�
−�

�

dtei�tFl1l2
�t� . �20�

At this stage, it looks like we may face a difficulty in han-
dling the infinite integrations whose integrands could oscil-
late wildly. Fortunately, one can avoid these integrations
completely and obtain the Fourier transforms Hl1l2

��� easily
and accurately. The key point here is to exploit the profile of
Fl1l2

�t�. Because the argument t of Fl1l2
�t� is a measurement

of how far apart the two potentials are, their magnitudes
decrease very quickly as �t� increases. This enables one to
assume their time range is not �−� , � �, but �−T ,T� where T
is a finite value. In our calculations, we choose T such that
the magnitudes of Fl1l2

�t� have decreased at t=T �or t=−T�
by seven orders of magnitude from their values at t=0. As an
example, for a typical collision path of the N2–N2 pair at
296 K, T is around 7.4 ps. Thus, to limit the interval to
�−T ,T� is well within the uncertainty tolerance in the calcu-
lations. Because Fl1l2

�t� are time-limited, well-behaved
functions, it becomes more certain that their continuous
Fourier transforms Hl1l2

��� are band-limited functions of
�.11 As a result, one is able to represent these continuous
Fourier transforms by discrete Fourier transforms which can
easily be computed.11 As shown later in Fig. 7, these Fourier
transform functions do decrease very quickly as � increases.
In summary, Hl1l2

��� can easily be derived with high
accuracy.

Finally, for later usage, we introduce Il1l2
���, the Cauchy

principal integrations of Hl1l2
���, obtained from the follow-
ing expression:
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Il1l2
��� = −

1

�
P�

−�

�

d��
1

�� − �
Hl1l2

���� , �21�

where P means the principal part. After Hl1l2
��� become

available, one can calculate these functions Il1l2
��� with ap-

propriate subroutines �for example, DQAWC, an adaptive
integration for Cauchy principal values, in IMSL�. We note
that the relationship between Hl1l2

��� and Il1l2
��� is governed

by the Hilbert transforms.12

Now, except for discussion about the trajectories, we

have completed most of the work and are one step away

�23� and �24� for Re�S2,outer,i� and Im�S2,outer,i�, except for the
from attaining the final results. With Eqs. �18�–�20�, one is
able to express S2,outer,i as

S2,outer,i =
1

�2�
�
l1l2

�
0

�

dtWl1
�a��t�Wl2

�b��t��
−�

�

d�e−i�tHl1l2
���

=
1

�2�
�
l1l2

�
−�

�

d�Hl1l2
����

0

�

dte−i�tWl1
�a��t�Wl2

�b��t� .

�22�
Furthermore, with Eqs. �13� and �14�, one can obtain
S2,outer,i =
1

�2�
�
l1l2
�

i�

�2i� + 1�C2�ii�l1,000��
i2i2�

�2i2 + 1��2i2� + 1��i2
C2�i2i2�l2,000��

−�

�

d�Hl1l2
����

0

�

dte−i��−�ii�−�i2i2�
�t�

=
1

�2�
�
l1l2
�

i�

�2i� + 1�C2�ii�l1,000��
i2i2�

�2i2 + 1��2i2� + 1��i2
C2�i2i2�l2,000��

−�

�

d�Hl1l2
�������� − �ii� − �i2i2�

�

− iP
1

� − �ii� − �i2i2�
�� . �23�
With the above expression, one can easily obtain Re�S2,outer,i�

Re�S2,outer,i� =��

2 �
l1l2
�

i�

�2i� + 1�C2�ii�l1,000�

��
i2i2�

�2i2 + 1��2i2� + 1��i2

�C2�i2i2�l2,000�Hl1l2
��ii� − �i2i2�

�� , �24�

and Im�S2,outer,i�

Im�S2,outer,i� =��

2 �
l1l2
�

i�

�2i� + 1�C2�ii�l1,000�

��
i1i2

�2i2 + 1��2i2� + 1��i2

�C2�i2i2�l2,000�Il1l2
��ii� − �i2i2�

�� . �25�

As shown by Eqs. �24� and �25�, after Hl1l2
��� and Il1l2

���
are available, to calculate Re�S2,outer,i� and Im�S2,outer,i� is
straightforward; the only thing needed to do is to pick up
values of Hl1l2

��� and Il1l2
��� accordingly and to add the

results together.
Similarly, we can derive expressions for S2,outer,f and

S2,middle in terms of Hl1l2
��� and/or Il1l2

���. In fact, expres-
sions for Re�S2,outer,f� and Im�S2,outer,f� are the same as Eqs.
replacement of the initial quantum number i by the final one
j. Meanwhile, S2,middle, which is real, is given by

S2,middle = �− 1�J+1�2��
l1l2

�2i + 1��2j + 1�

��− 1�l1C�iil1,000�C�j jl1,000�

� W�ijij,Jl1��
i1i2�

�2i2 + 1��2i2� + 1��i2

�C2�i2i2�l2,000�Hl1l2
��i2i2�

� , �26�

where W�ijij ,Jl1� are the Racah coefficients. In the above
expression, J is the rank of the transition operator. For ex-
ample, J=0 for isotropic Raman transitions, J=1 for electric
dipole transitions, J=2 for anisotropic Raman transitions,
and so on.

F. Trajectories

Before proceeding, we first note that all of the correla-
tion functions, Fourier transforms, and Cauchy integration
functions depend on the velocity v and the trajectory labeled
by rc. Therefore, one has to keep in mind that there are
always two parameters, v and rc, attached to these functions.
Now, we would like to show briefly how within the new
formalism one can easily perform the linewidth and shift
calculations based on more accurate trajectories than the
straight line and the parabolic trajectories commonly used in
the usual method. Before beginning, we reiterate that our

work is still based on the basic assumption that the trajectory
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is governed by the isotropic potential only; i.e., the aniso-
tropic interaction does not play any role in determining the
trajectory along which the two interacting molecules move in
the collisional process. Of course, this is not true and this
limitation is a big drawback suffered by most of theoretical
width and shift calculations, except for a few done by Green,
based on close-coupling scattering theory applicable only for
simple systems usually consisting of one atom and one
molecule.13

Since Robert and Bonamy developed the BR formalism,
there are two trajectories3 which are commonly used in cal-
culations. We label them as the “parabolic” and the modified
parabolic trajectories here. The first one assumes the trajec-
tory is still a straight path, but the modulus R�t� is given by
R�t�=�rc

2+vc�
2t2. This implies that the translation motion

moves with an “apparent” velocity defined by vc�=v0�1
+8� /mv2�5�	 /rc�1/2−2�	 /rc�6�	1/2. The second one is a
modified version in which the straight line is replaced by a
curve defined by sin �t��vct /�rc

2+vc�
2t2 and cos �t�

=�1−sin2 �t� where vc�=v�1−8� /mv2��	 /rc�12

− �	 /rc�6�	1/2� is the velocity at R=rc. However, it seems that
one cannot make this replacement everywhere because
sin �t� could be larger than 1 as t increases for some trajec-
tories in which vc�vc�. This implies that one has to manipu-
late it further, more or less, arbitrarily.

More recently, there have been attempts by Buldyreva
et al. to consider the “exact” trajectory.14,15 Their work is
based on Bykov’s method presented more than a decade ago,
but no computation of linewidths was performed at that
time.16 A basic idea of Bykov is that by changing the inte-
gration variable from the time t to the distance r in calculat-
ing the resonance functions, the trajectory dependence of the
resonance functions can be explicitly taken into account.
There are two kinds of the “exact” trajectories considered
according to which part of the potential is used to determine
the trajectory: an extra LJ model or the isotropic part of the
potential itself. Of course, the latter is more reasonable than
the former.

We now show how to deal with this problem. We think
that in comparison with Bykov’s method, the present one is
simpler and more straightforward. As shown by Eq. �17�,
when one calculates Gl1l2

�t , t�� �or Gl1l2
�t�+ t /2 , t�− t /2��, one

needs to know how R�t� changes along the trajectory. There-
fore, taking into account the trajectory dependence is more
natural here. In addition, after the trajectories are available
and one knows how the relative motion moves along them,
there are no differences between the straight line, the para-
bolic, and the “exact” trajectories. As a result, the only thing
required is to show how to find the “exact” trajectory. As an
example, we show here how to deal with the more difficult
one, i.e., the “exact” trajectory determined by the exact iso-
tropic part of the interaction.

In the present study, the trajectories are labeled by the
closest distance rc. We assume that the trajectory lies in the
XOY plane and it is described by R�t� and �t�. Based on
energy E and angular momentum L conservation, the trajec-
tory of interest is determined by the following two

17
equations:
t = �
rc

R 1

� 2

m
�E − Viso�r�� −

L2

m2r2

dr

=
rc

v
�

1

R/rc ydy

�y2 − 1 +
2Viso�rc�

mv2 − y22Viso�rcy�
mv2

�27�

and

 = �
rc

R L

mr2� 2

m
�E − Viso�r�� −

L2

m2r2

dr

=�1 −
2Viso�rc�

mv2

��
1

R/rc dy

y�y2 − 1 +
2Viso�rc�

mv2 − y22Viso�yrc�
mv2

, �28�

where Viso�r�= �4��−3/2A�000;r�. With the subroutine
DQDAG to carry out the above integrations for different
values of R /rc from t=0 to t=1.5 T, one is able to obtain two
functions t�R� and �R� necessary to determine the trajectory.
Then, with a reverse procedure, one can obtain R�t� and �t�
for 0� t�1.5 T. Due to the symmetry of R�−t�=R�t� and
�−t�=−�t�, we can obtain the whole trajectory. According
to our tests, if one chooses about 400 points to depict the
whole trajectory with more points around R=rc and fewer
points elsewhere, the job requires less than 40 s of CPU
time. We expect that this resolution is fine enough to depict
the trajectories well, even those with rc close to the minimum
where the bending is largest. Therefore, one can conclude
that with our new method, to consider this kind of “exact”
trajectory does not add a big burden to the computational
effort.

As an example, we consider these four trajectories at T
=296 K derived for a molecular pair of N2–N2. The poten-
tial model used here is from a paper by Looney and
Rosasco.18 The parameters of Vatom-atom given in these au-
thors’ notation are ���=36.4 K and 	��=3.20 Å. Mean-
while, the Lennard-Jones �LJ� parameters are �=95.2 K and
	=3.75 Å, and the quadrupole moment of N2 is −1.30 D Å.
In Fig. 1, we plot trajectories occurring near to a head-on
collision by selecting rc=3.50 Å. Because the repulsive force
is dominant �except for the straight path� all three other tra-
jectories bend away from the scattering center �at the origin
of the plane�. The two parabolic ones are represented by the
dash-dotted and dashed lines, respectively. The two “exact”
ones are given by a dotted and a solid curve, respectively. In
addition, by adding small circles on the curves, we explicitly
show how fast the relative motion of the pair moves along
the trajectories. A travel time from one circle to its next is
0.005 ps. To show this feature is important because one has
to rely on both this and the trajectory to know how R�t�
varies with time; besides the anisotropic interaction, the lat-
ter is needed in calculating Gl1l2

�t�+ t /2 , t�− t /2� as shown by

Eq. �17�. It is worth noting that the relative motion moves
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with the highest speed along the first “parabolic” path. The
higher “apparent” velocity vc� applicable in the straight path
is required to compensate for the bending effect in other
trajectories such that the increase of the modulus R�t� can,
more or less, keep a similar pace with the others. In Fig. 2,
we present these trajectories with rc=4.50 Å at which the
attractive force is dominant. Because a larger scale is used, a
travel time from one circle to its next is 0.05 ps.

As shown by the figure, except for the straight path, all
others bend towards the scattering center. As a result, the
“apparent” velocity vc� with which the relative motion moves
along the first trajectory becomes the smallest. As shown in
these two figures, there are significant differences between
two “exact” trajectories, especially for the head-on collision
with rc=3.50 Å. This is one indication that different choices
of the LJ parameters could significantly affect the calculated
line widths and shifts.

Furthermore, instead of the impact parameter b, most
people prefer to use the closest distance rc to label the tra-
jectory. Accordingly, the integration variable is changed from

FIG. 1. Calculated trajectories for a molecular pair of N2–N2 at 296 K with
rc=3.50 Å. The scattering center is at the origin of the XY plane. The two
“exact” trajectories determined by Viso�R� and VLJ�R� are represented by the
solid and dotted lines, respectively. The two “parabolic” trajectories are
given by the dot-dashed and dashed lines. Small circles are added on the
trajectories such that a travel time between circles is 0.005 ps.

FIG. 2. The same as Fig. 1 except for rc=4.50 Å and a travel time between

circles is 0.05 ps.
b to rc and the lower limit from 0 to rc,min in Eqs. �1� and �2�.
The latter can be derived from the expression directly

rc,min = 	
21/6

�1 +�1 +
mv2

2�
�1/6 , �29�

where 	 and � are the LJ parameters, for the two parabolic
trajectories and the “exact” one governed by the LJ model.
Meanwhile, for the “exact” trajectory governed by Viso�R�,
the value of rc,min can be derived numerically from the equa-
tion

2Viso�rc,min�
mv2 − 1 = 0. �30�

Based on the potential model used here, we find that values
of rc,min is 3.4626 Å from Eq. �29� and 3.4124 Å from Eq.
�30�. Although the difference between these two values looks
small, it could affect calculated linewidths and shifts signifi-
cantly for cases where the integrands enhance quickly as rc

approaches rc,min in Eqs. �1� and �2�. In order to show the
problem more clearly, we present the exact Viso�R� interac-
tion and a LJ model VLJ�R� with �=95.2 K and 	=3.75 Å in
Fig. 3. As shown by the figure, the latter does not match the
former well. Instead, if one simply adopts the values of � and
	 listed in the literature19 �i.e., �=95.05 K and 	=3.698 Å�,
a much better fitting can be obtained.

We think that significant uncertainties can be introduced
by using a LJ potential with freely adjustable parameters
unless the selected LJ model matches Viso�R� well. In reality,
the physics is such that it is the anisotropic interaction, not
the isotropic interaction that plays the major role in molecu-
lar line broadening. If calculated the results depend more
sensitively on the latter, they become less physically mean-
ingful no matter how good they appear to be. We will discuss
this topic further later.

G. Profiles of Gl1l2
„z�+z /2 ,z�−z /2… and Fl1l2

„z…

In this section, we show some examples of Gl1l2
�t�

FIG. 3. The profiles of Viso�R� and VLJ�R�. The solid line is for Viso�R�. The
dotted line is the LJ model VLJ�R� with �=95.2 K and 	=3.75 Å. A better
LJ model with �=95.05 K and 	=3.698 Å is given by a dot-dashed line.
+ t /2 , t�− t /2� and Fl1l2
�t�. We prefer to change the time vari-
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able t to a dimensionless variable z defined by z
vt /rc for
the “exact” trajectories or defined by z
vc�t /rc for the para-
bolic ones. Accordingly, we change the frequency variable �
to a dimensionless k defined by k
rc� /v or k
rc� /vc� later.
For simplicity, in the following we use the same notations for
these new functions. We again choose N2–N2 as an example
because this system has been studied by many researchers
and we adopt the potential model used in plotting the trajec-
tories. With respect to the irreducible tensor ranks of l1 and
l2, we only present results for the major pair of l1=2 and l2

=2. Meanwhile, as mentioned above, there are no big differ-
ences in dealing with the different model trajectories. In fact,
we have made tests for all the trajectories discussed above;
however, we present only results based on the “exact” trajec-
tory determined by Viso�R�.

In the present study, we will not perform an average over
velocities. Instead, we replace all velocities by the mean
thermal velocity �v=�8kT /�m�. As a result, we have re-
moved the velocity dependences from all functions. How-
ever, besides their explicit variables such as z and z�, they
still depend on the trajectory parameter rc. Therefore, in gen-
eral, one has to use contour plots. Finally, it is worth men-
tioning that except for the last two figures �Figs. 10 and 11�
in order to show that the convergence problem exists in the
literature, we are sure that all our calculated results in the
following figures are converged. In Figs. 4 and 5, we show
profiles of G22�z�+z /2 ,z�−z /2� at two selected rc values. In
Fig. 4, we present this function evaluated from an almost
head-on “strong” collision with rc=3.50 Å. As shown in the
figure, there is a very sharp peak located at z=0 and z�=0,
and the magnitude decreases very quickly as �z� and/or �z��
increase. In Fig. 5, we present the results obtained from a
“mild” collision with rc=4.50 Å. By comparing these two
figures, we find that the magnitudes decrease dramatically
from a strong collision to a mild collision. Meanwhile, the
latter’s profile contains more features than the former and the
decrease in magnitude is slower. As a result, the scales for
the z and z� axes used in Fig. 5 have been doubled. In addi-

FIG. 4. Calculated function G22�z�+z /2 ,z�−z /2� �in ps−2� at 296 K for a
molecular pair of N2–N2. The calculation is based on the “exact” trajectory
with rc=3.50 Å determined by Viso�R�. The corresponding correlation func-
tion F22�z� at 3.50 Å is also plotted by a single line in the figure.
tion, symmetries of Gl1l2
�z�+z /2 ,z�−z /2� for z→−z, for
z�→−z�, and interchanging both z and z� �i.e., z→−z and
z�→−z�� are clearly shown in these figures. The last symme-
try results directly from the fact that collision processes are
time-reversal invariant. In order to show the correlation func-
tions derived directly from these G functions, we have also
plotted the function F22�z� using a single line in the figures.
However, in order to fit the scales in these plots, the magni-
tudes of F22�z� have been adjusted. Therefore, one should
only focus on their patterns, not their magnitudes.

The autocorrelation functions plotted in Figs. 4 and 5 are
not adequate to show how they vary with z and rc. Therefore,
a contour plot is necessary. With Eq. �19�, we derive the
autocorrelation function with l1=2 and l2=2 and present the
results for z�0 and 3.5 Å�rc�8.0 Å in Fig. 6. Because
F22�z� is an even function, it is unnecessary to plot it with
z�0. With respect to the range of rc, we intentionally start
the plot from 3.5 Å, not rc,min because we want to avoid a
high peak there. Otherwise, a much larger scale would be
necessary which would not show the whole profile well.
Why we selected 8.0 Å as the upper limit will become clear

FIG. 5. The same as Fig. 4, except for rc=4.50 Å.

FIG. 6. Autocorrelation function F22�z� �in ps−2� at 296 K for a molecular
pair of N2–N2 as a two-dimensional function of z �dimensionless� and rc �in
angstrom�. By multiplying �rc /3.5�10, a factor of rc

−10 has been excluded
from F22�z� in this contour plot. The calculation is based on the “exact”

trajectory determined by Viso�R�.
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later. A very rapid decrease of its magnitude as z increases is
clearly shown in the figure. Meanwhile, in order to show
how the profile varies with rc more clearly within a limited
scale, F22�z� in this figure and all following are multiplied by
a factor of �rc /r0�10, where r0 �=3.5 Å� is the starting value
of the rc axis. The factor of rc

−10 is a common dependence of
those functions on rc if the leading quadrupole-quadrupole
interaction Vqq is the only anisotropic potential component.
In this latter case, the plotted profiles should not exhibit any
rc dependence. As shown by the figure, the short-range
Vatom-atom plays significant role for F22�z� for z→0 and rc

→rc,min, and its effects become negligible for z�2 or rc

�6.0 Å. This feature is expected because except at short
ranges, Vqq dominates. As mentioned above, profiles of
F22�z� and other l1 and l2 components contain all dynamical
information in the time domain necessary in calculating line-
widths and shifts.

H. Profiles of Hl1l2
„k… and Il1l2

„k…

In this section, we present two contour plots for the Fou-
rier transform functions Hl1l2

�k� and their corresponding
Cauchy principal integrations Il1l2

�k�. Because Hl1l2
�k� are

even functions of k and Il1l2
�k� are odd, we present only half

of them along the positive k axis. Again, we select their
major components with l1=2 and l2=2 as the example and
present H22�k� and I22�k� derived from the “exact” trajecto-
ries determined by Viso�R� in Figs. 7 and 8, respectively. As
mentioned above, we have excluded a factor of rc

−10 from
these plots. As shown by Fig. 7, except for rc→rc,min, mag-
nitudes of H22�k� increase first as k increases, reach a maxi-
mum, and then fall to zero very quickly. This is a clear dem-
onstration that these Fourier transforms are band limited.
With respect to the rc dependence, as long as the values of rc

are beyond 6.0 Å, the profile of H22�k� does not change pat-
tern. Then, as rc decreases, its magnitude becomes enhanced,
especially for small k values. Finally, when rc→rc,min, the

FIG. 7. Fourier transform H22�k� �in ps−2� at 296 K for a molecular pair of
N2–N2 as a two-dimensional function of z �dimensionless� and rc �in ang-
strom�. By multiplying �rc /3.5�10, a factor of rc

−10 has been excluded from
H22�k� in this contour plot. The calculation is based on the “exact” trajectory
determined by Viso�R�.
profile changes completely such that its magnitude increases
as much as five to six times. As a result, one can expect that
by taking into account the Vatom-atom component in the
N2–N2 pair, calculated widths will be significantly larger
than those derived from the quadrupole-quadrupole interac-
tion Vqq alone. In Fig. 8, we show the contour plot for I22�k�.
As shown in the figure, I22�k� increases from 0 to its maxi-
mum as k increases; then, it falls down slowly towards its
asymptotic value. Meanwhile, the profile of I22�k� keeps the
same pattern for rc�6.0 Å, increasing as rc decreases, and
enhances dramatically as rc→rc,min. Note that for larger rc

values where the influence of Vatom-atom becomes negligible,
our calculated profiles of H22�k� and I22�k� match the real
and the imaginary parts of the resonance function applicable
for Vqq exactly.

I. Calculated half-widths from different trajectories

In the present study, to develop a new method to enable
one to remove some uncertainties in calculating the widths
and shifts, and to use this powerful method to exhibit pos-
sible problems existing in current theoretical studies are our
main goals. We do not make any attempt to match the ex-
perimental data by optimizing potential parameters in the
present calculations, rather we simply adopted the potential
model used by others. For completeness, however, we do
provide experimental data20 in the following figures. It may
appear that the new calculated values are worse than the
older ones presented in the literature. But, readers should not
use these comparisons as a gauge to judge the accuracy of
the present theory because the new results are “true” values
representing the current approximations. For example, our
calculated results are converged, but we are pretty sure that
at least some of the results in the literature are not. If these
authors were to take into account more terms to reach the
convergence, they should obtain the same values as ours.

We have calculated the Raman Q line widths for N2–N2

at 296 K based on the four model trajectories discussed

FIG. 8. Cauchy principal integration I22�k� �in ps−2� at 296 K for a molecu-
lar pair of N2–N2 as a two-dimensional function of z �dimensionless� and rc

�in angstrom�. By multiplying �rc /3.5�10, a factor of rc
−10 has been excluded

from I22�k� in this contour plot. The calculation is based on the “exact”
trajectory determined by Viso�R�.
above and we present these results with bold curves in Fig. 9.
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As shown by the figure, calculated values depend strongly on
which trajectory is chosen. The “exact” trajectory determined
by Viso�R� produces the largest magnitude, while the first
“parabolic” one gives the smallest. Meanwhile, the “exact”
trajectory determined by VLJ�R� and the modified parabolic
are in between and their differences are very small. It is
worth mentioning that the trajectories themselves are not
solely responsible for these differences. The poor matching
between Viso�R� and the LJ model is another source for dif-
ferences. In order to show the effect from the LJ parameters,
we use better parameters19 �=95.05 K and 	=3.698 Å and
repeat calculations for those trajectories depending on
VLJ�R�. For simplicity, we present these results with the same
kind of curves, but denote them by thin lines. As shown in
Fig. 9, the differences have been reduced significantly. Based
on these comparisons, one can draw two conclusions. First of
all, calculated results depend significantly on the trajectory.
Because the “exact” trajectory determined by Viso�R� is the
most realistic it is the best choice in calculating linewidths
and shifts. Second, if one chooses another trajectory model,
one must be careful to check whether their LJ parameters
match Viso�R� well. The LJ parameters should not be treated
as free parameters to improve the agreement between theo-
retical predictions and experimental data. Besides, the total
potential should satisfy other criteria such as the second
virial coefficient, differential scattering cross section, etc.

In the present study, while we have not carried out the
velocity averaging as shown in Eqs. �1� and �2� there is no
problem in doing this using the present method. The only
thing one needs to do is to select several dozens of values of
the velocity and to repeat the calculations of S1 and S2 for
those specified velocities. Then, by using proper weights
from the Maxwell-Boltzmann distribution, one can carry out

FIG. 9. Calculated Raman Q line half-widths of N2–N2 at 296 K from
different trajectories. Results derived from the “exact” trajectory determined
by Viso�R� are given by a solid. For other trajectories, we plot one bold and
one thin line for each of them corresponding to two pair of the LJ param-
eters: one with �=95.2 K, 	=3.75 Å and the other with �=95.05 K, 	
=3.698 Å, respectively. Two dotted lines are results based on the “exact”
trajectory determined by VLJ�R�. Two dot-dashed lines are results from the
“parabolic” trajectory with apparent velocity vc� moving along the straight
path. Two dashed ones are from the modified parabolic trajectory. The ex-
perimental data are given by �.
the averaging over the velocity.
J. Convergence checks

After discussing how to deal with more sophisticated
trajectory models and the uncertainties resulting from the
selection of the LJ parameters, we would like to use the
present method to check the convergence problem which, to
the best of our knowledge, has never been thoroughly inves-
tigated. As mentioned previously, there are two cutoffs intro-
duced in the calculations, but it is the second cutoff that
could cause trouble. Again, we select the Raman Q line
width of N2–N2 as an example and carry out two checks for
the two cutoffs. We use the “parabolic” trajectory with the
apparent velocity vc� moving along a straight path to illustrate
our results. In Fig. 10, we present a check for the second
cutoff, i.e., by imposing an upper limit for the summation
indices w and w� in Eq. �10�. Usually, if one chooses 4 as the
upper limit of 2w and 2w�, the cutoff is said to be fourth
order. This fourth-order cutoff is commonly adopted by
many researchers because with the usual methods, it is diffi-
cult to use a higher cutoff. In contrast, as explained above,
with the present method one can choose any cutoff one
wants. Therefore, the present method can serve as a mean to
investigate whether calculated results existing in the litera-
ture are converged or not. In Fig. 10, we present calculated
results derived with six choices: the 4th, 6th, 8th, 10th, 12th,
and 16th order cutoffs. From the figure, one can draw two
conclusions. The first is that fourth order is too low to reach
converged values. The second is that well-converged values
can be achieved only from the tenth-order cutoff or higher.
This implies that at least for as many cases of practical in-
terest, one is not able to obtain converged results using the
usual methods. In summary, there are serious convergence
problems exiting in current linewidth and shift theories and
results.

With respect to the first cutoff associated with selections

FIG. 10. Calculated Raman Q line half-widths of N2–N2 at 296 K with
different cutoffs. Results are based on the “parabolic” trajectory with appar-
ent velocity vc� moving along the straight path. There are two major pairs of
l1 and l2 taken into account. Theoretical values obtained with the 4th, 6th,
8th, 10th, 12th, and 16th order cutoffs are represented by six curves, from
the bottom to the top, respectively. As shown by the figure, the calculated
widths become converged only for tenth order or beyond. The fourth-order
cutoff used commonly in the literature is too low to reach converged results.
The experimental data are given by �.
of irreducible tensors l1 and l2, the situation is much better.
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For the N2–N2 system, the leading electrostatic interaction is
the quadrupole-quadrupole interaction. Therefore, the domi-
nant pair of tensors is l1=2 and l2=2 labeled as �22	. All the
other pairs result from the short-range Vatom-atom interaction.
Due to the symmetry of the N2–N2 system, the next most
important pair is �20	. Then, there are four pairs: �40	, �24	,
�42	, and �60	 at the same level of hierarchy. If one goes
further, there are three more pairs: �26	, �62	, and �44	. Ac-
cordingly, we carry out calculations with four different selec-
tions of �l1l2	. We first consider only the dominant pair �22	,
then the two major pairs �22	 and �20	, then six pairs by
adding �40	, �24	, �42	, and �60	, and finally all nine pairs
listed above. For each of these pairs, we use the 12th order
cutoff to do calculations. In Fig. 11, we present our results to
show how the values converge as more pairs are taken into
account. As shown by the figure, the convergence goes very
quickly such that by considering the major two pairs �22	
and �20	 only, the results are already well converged. It is
worth noting that only these two pairs were used in literature
for the Raman Q linewidths of the N2–N2 system. Therefore,
one can conclude that with respect to the first cutoff, there is
no convergence problem in previous studies of the Raman Q
linewidths for N2–N2 or similar systems. Of course, one
cannot extrapolate this conclusion to other linewidths or to
other systems without performing convergence checks such
as discussed here.

Before ending this section, we would like to say a few
words about why the convergence problem has remained
open for so many years. Of course, it is partially due to the
fact that one could not make a complete check because the
exact treatment of higher-order cutoffs were not feasible. In

FIG. 11. Calculated Raman Q line half-widths of N2–N2 at 296 K with
different limitations of the pair of l1 and l2 considered in calculations. Re-
sults are based on the “parabolic” trajectory with apparent velocity vc� mov-
ing along the straight path. The cutoff used here is the 12th order. There are
four choices presented in the figure. The dashed curve is for considering the
dominated pair �22	 �i.e., l1=2 and l2=2� only. The dot-dashed curve is for
two major pairs �22	 and �20	 which is commonly adopted in literature for
N2–N2 system. The other two represent results from more pairs to be taken
into account in consideration. The dot-dashed one is for six pairs: �22	, �20	,
�40	, �24	, �42	, and �06	. The solid line is for nine pairs in which besides
those listed six pairs, there are three more pairs �60	, �26	, and �44	. These
two curves are indistinguishable. As shown by the figure, one can obtain
converged values by including two major pairs. The experimental data are
given by �.
the literature, there are some discussions to justify the usage
of the fourth-order cutoff. They are based mainly on an es-
timation of how small the magnitudes of correction terms in
the spherical expansion of Vatom-atom would be, in comparison
with the leading terms. The key point here is that the small-
ness of the corrections in itself is not adequate to justify
convergence because small neglected terms could still make
significant contributions through couplings with stronger
terms included.

III. DISCUSSIONS AND CONCLUSIONS

In the present study, based on introducing the coordinate

representation and starting calculations of the Ŝ matrix from
the autocorrelation functions, we have developed a new
method with which one is able to calculate converged half-
widths and shifts no matter how complicated the potential
model and trajectory are. This theory enables one to over-
come the convergence problem completely. Our calculated
results represent “true” values at the adopted level of ap-
proximation. Using this method, we have performed conver-
gence checks over the cutoffs and concluded that the com-
monly employed cutoffs for w and w� are far from adequate
as has heretofore been assumed. As a result, one must check
carefully whether calculated results are converged or not,
compare only converged results with experimental data, and
use these latter comparisons to look for directions to make
further improvements and refinements of the theory.

Finally, we would like to make some general comments
on the approximations currently made in theoretical calcula-
tions. It is well known that the calculations of linewidths and
shifts are based on several approximations. The binary colli-
sion and the impact approximations are two sound ones
whose applicability in calculating half-widths and shifts has
been well justified. Besides these two, there are others based
on the formalism used. Often, these additional approxima-
tions are necessary to make practical calculations feasible,
but they also inevitably lead to uncertainties in the calculated
results. Therefore, in order to provide more reliable theoret-
ical predictions, it is necessary to remove as many of these
latter approximations as possible.

Based on previous work,5 we have removed some ap-
proximations that are tacitly incorporated in the RB formal-
ism by an invalid assumption in applying the linked-cluster
theorem21,22 in the derivation. With the present study, we
have removed another two approximations: one is related to
the cutoffs and the other is associated with the trajectory
assumed. However, there are still other approximations re-
maining. Specifically, we would like to list three major ones
which could significantly affect the reliability of calculated
results. The first one is the second-order perturbation expan-

sion in the Liouville Ŝ matrix. So far, for most theoretical
calculations, the third-order terms have been ignored. We
think that one should begin to consider contributions from
these higher-order terms, at least for simple systems. The
second one is that we have assumed that the Liouville resol-
vent operator is diagonal with respect to the line space of the
absorber molecule. This assumption is applicable only for
well-separated lines. One has to develop a more general for-

malism such that the line coupling effect can be taken into
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account. There have been a number of studies on line
coupling,23,24 but for the most part, these have been con-
cerned primarily with Q branches and far wings of molecular
bands. Finally, it has been assumed that the trajectory is de-
termined only by the isotropic part of interaction and the
anisotropic part is not considered. We think that this approxi-
mation could introduce significant uncertainties in the calcu-
lations because the anisotropic interaction does play a sig-
nificant role in determining the trajectory. As shown by Fig.
9, small changes of the trajectory could cause quite large
differences in the corresponding widths and shifts. However,
to address this problem presents a big challenge because the
coupling between the internal motion and translational mo-
tion has to be considered.

It is well known that there are urgent requirements to
provide accurate theoretical calculated widths and shifts for
diverse applications. But, one has to keep in mind that unless
the problems mentioned above and possibly some others
have been addressed, there is still much work to be done
before one can conclude with certainty that the theoretically
calculated values are really reliable.
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